Nanoscale dynamics of synaptic vesicle trafficking and fusion at the presynaptic active zone.
نویسندگان
چکیده
The cytomatrix at the active zone (CAZ) is a macromolecular complex that facilitates the supply of release-ready synaptic vesicles to support neurotransmitter release at synapses. To reveal the dynamics of this supply process in living synapses, we used super-resolution imaging to track single vesicles at voltage-clamped presynaptic terminals of retinal bipolar neurons, whose CAZ contains a specialized structure-the synaptic ribbon-that supports both fast, transient and slow, sustained modes of transmission. We find that the synaptic ribbon serves a dual function as a conduit for diffusion of synaptic vesicles and a platform for vesicles to fuse distal to the plasma membrane itself, via compound fusion. The combination of these functions allows the ribbon-type CAZ to achieve the continuous transmitter release required by synapses of neurons that carry tonic, graded visual signals in the retina.
منابع مشابه
Nanoscale Structural Plasticity of the Active Zone Matrix Modulates Presynaptic Function
The active zone (AZ) matrix of presynaptic terminals coordinates the recruitment of voltage-gated calcium channels (VGCCs) and synaptic vesicles to orchestrate neurotransmitter release. However, the spatial organization of the AZ and how it controls vesicle fusion remain poorly understood. Here, we employ super-resolution microscopy and ratiometric imaging to visualize the AZ structure on the n...
متن کاملA novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone
In central nervous system (CNS) synapses, action potential-evoked neurotransmitter release is principally mediated by CaV2.1 calcium channels (CaV2.1) and is highly dependent on the physical distance between CaV2.1 and synaptic vesicles (coupling). Although various active zone proteins are proposed to control coupling and abundance of CaV2.1 through direct interactions with the CaV2.1 α1 subuni...
متن کاملThe Proteome of the Murine Presynaptic Active Zone
The proteome of the presynaptic active zone controls neurotransmitter release and the short- and long-term structural and functional dynamics of the nerve terminal. The proteinaceous inventory of the presynaptic active zone has recently been reported. This review will evaluate the subcellular fractionation protocols and the proteomic approaches employed. A breakthrough for the identification of...
متن کاملPresynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein.
A systematic forward genetic Drosophila screen for electroretinogram mutants lacking synaptic transients identified the fuseless (fusl) gene, which encodes a predicted eight-pass transmembrane protein in the presynaptic membrane. Null fusl mutants display >75% reduction in evoked synaptic transmission but, conversely, an approximately threefold increase in the frequency and amplitude of spontan...
متن کاملRIM1alpha forms a protein scaffold for regulating neurotransmitter release at the active zone.
Neurotransmitters are released by synaptic vesicle fusion at the active zone. The active zone of a synapse mediates Ca2+-triggered neurotransmitter release, and integrates presynaptic signals in regulating this release. Much is known about the structure of active zones and synaptic vesicles, but the functional relation between their components is poorly understood. Here we show that RIM1alpha, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- eLife
دوره 5 شماره
صفحات -
تاریخ انتشار 2016